
Managing data for Curiosity, fun and profit	

	

Rajeev Joshi	

NASA / Jet Propulsion Laboratory	

3 missions in one	

Cruise	

EDL ���

Entry, Descent & Landing	

Surface	

Avionics	

Prime Computer	
 Backup Computer	

Flash
memory	

Flash
memory	

X-Band
radios	

direct-to-Earth���
low bandwidth���

100s of bps	

UHF ���
radios	

rover-to-orbiter���
high bandwidth���

2 Mbps	

RAM	
RAM	

Cruise ���
8.3 months	

“Realtime” telemetry	

Periodic measurements (“EHA”)	

Discrete event log (“EVRs”)	

Streamed continuously
whether or not anyone is
listening	

“Recorded” telemetry and data products	

Realtime telemetry saved to nonvolatile memory���
 Sent only when requested by ground	

“Data products” containing���
 detailed engineering data	

 science observations (images, spectra, …)	

EDL ���
7 minutes	

Surface���
>2 years	

10:00	
 16:00	
 02:00	
 10:00	

Typical sol on surface	

-- wake up and listen to Earth --	

10:00 – 10:40 X-Band window with Earth; receive plan	

-- execute plan --	

16:00 – 16:10 UHF PM window with MRO ���
17:05 – 17:19 UHF PM window with Odyssey	

-- rover asleep –	

02:00 – 02:10 UHF AM window with MRO	

-- rover asleep --���
03:22 – 03:33 UHF AM window with Odyssey	

-- rover asleep –	

-- wake up and listen to Earth --	

	

Data Management Needs	

Cruise	

EDL	

Surface	

store data to flash on generation���
retrieve data from flash on ground command	

stream data to orbiters as it is being generated	

commit data to flash before surface transition	

store data to flash on generation	

retrieve data from flash in time for comm windows	

Challenges	

Processor speed	
 132 Mhz	

Main memory	
 128 MByte (same as MER)	

support upto 250,000 products in system	

wakeup and prep for AM comm windows	

Predictable behavior���
 bounds on worst-case performance (time and memory) ���
 even in the event of an unexpected reboot	

Implement a reliable storage mechanism���
 on unreliable (flash) medium	

Examples	

Challenges	

Processor speed	
 132 Mhz	

Main memory	
 128 MByte (same as MER)	

overhead with 250,000 products in system	

wakeup and prep for AM comm windows	

Predictable behavior���
 bounds on worst-case performance (time and memory) ���
 even in the event of an unexpected reboot	

Implement a reliable storage mechanism���
 on unreliable (flash) medium	

Examples	

Why flash filesystems are hard	

pages	

blocks	

Asymmetry of write / erase	

write_page	

erase_block	

Bad blocks	

Limited block lifetimes���
 must do wear-leveling	

Challenges	

Processor speed	
 132 Mhz	

Main memory	
 128 MByte (same as MER)	

Predictable behavior���
 bounds on worst-case performance (time and memory) ���
 even in the event of an unexpected reboot	

Implement a reliable storage mechanism���
 on unreliable (flash) medium	

Challenges	

Processor speed	
 132 Mhz	

Main memory	
 128 MByte (same as MER)	

Predictable behavior���
 bounds on worst-case performance (time and memory) ���
 even in the event of an unexpected reboot	

Implement a reliable storage mechanism���
 on unreliable (flash) medium	

Hard deadlines!	

Formal Methods?	

Filesystem specification	

creat()
open()
read(),write()
lseek()
mkdir()
rmdir()

use pre-/post- conditions	

“Reset-reliability”���
 filesystem shall remain consistent across an unexpected reboot	

strengthen the spec to require���
 operations be atomic wrt reboot	

Difficulties	

A filesystem is a recursive data type	

requires reasoning about reachability (hard)	

Initial attempts	

TLA+ (Joshi)	

ACL2 (Erickson)	

VDM (Hu)	

But���
 large semantic gap between spec and flight code	

 lack of available tools to bridge this gap	

Filesystem reference implementation���
(Holzmann)	

1000 lines of C	

Simpler���
 assumes simple storage medium (volatile RAM) ���
 not fault tolerant	

6000 lines of flight code	
vs	

Filesystem correctness	

ref.op(x,y)	

flight.op(x,y)	

 ���
choose op(x,y) ���
 [inject fault in flight] ���
r0 := flight.op(x, y) ���
r1 := ref.op(x, y) ���
assert r0 == r1	

assert flight.state ~ ref.state	

assert flight.invariants()	

includes space- and���
wear-leveling checks	

tree equivalence	

(a)	

(b)	

(c)	

Filesystem correctness	

ref.op(x,y)	

flight.op(x,y)	

 ���
choose op(x,y) ���
 [inject fault in flight] ���
r0 := flight.op(x, y) ���
r1 := ref.op(x, y) ���
assert r0 == r1	

assert flight.state ~ ref.state	

assert flight.invariants()	

data structure���
invariants; properties
not modeled in ref	

tree equivalence	

(a)	

(b)	

(c)	

Golden Rule for testing	

 if either (a) or (b) fails	

 strengthen (c) until it also fails	

Randomized testing	

Simple to set up and maintain���
 we used SPIN as a test driver (with unsound abstractions) ���
 instrument with CIL to measure path coverage to evaluate heuristics	

Surprisingly effective	

Easy to parallelize	

found many bugs that would not have been caught in system test	

The filesystem caching bug���
 adding read cache to NVDS	

 exposed a latent bug in NVFS���
���
would have resulted in all file creations failing after���
~80 sols on surface	

NVDS	

NVFS	

Failures of the test program	

Sol-217 anomaly	

a bug in filesystem rebuild on boot���
caused a file to become corrupt (wrong size) ���
à failed checksum���
 resulted in safe mode (loss of 1 day)	

Scenario���
 latest file F is deleted���
 -- reboot --���
 new file G is created and���
 reuses pages from F ���
 -- reboot –	

Sol-200 anomaly	

catastrophic failure of flash memory resulted in filesystem unavailability	

manager task did not handle situation gracefully	

task that controls shutdown became blocked	

required ground to force swap to backup computer	

Randomized testing challenges	

Overnight run returns many occurrences of the same bug	

What to do when no more bugs are being found?	

Less effective without a reference implementation	

Randomized testing challenges	

Overnight run returns many occurrences of the same bug	

What to do when no more bugs are being found?	

Less effective without a reference implementation	

How do we climb the verification ladder���
 from randomized testing���
 to full functional verification?	

Formal Methods & Ground Operations	

> 150 Gbits of data returned by MSL so far	

often >1 Gbit in a single day	

how do we analyze all this data?���
 anomaly investigations���
 trending reports���
 find smoking guns	

Telemetry Analysis	

current practice���
 ad-hoc scripts (python, perl, Excel macros)	

hard to understand, maintain, debug 	

Telemetry Analysis	

current practice���
 ad-hoc scripts (python, perl, Excel macros)	

hard to understand, maintain, debug 	

Can we leverage formal methods?	

declarative rules���
process telemetry 24 / 7	

semantic querying to aid anomaly investigations	

